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Abstract

The Cray XT3 and XT4 have similar architectures, differing primarily in memory performance and
in bandwidth between the node and interconnect. This paper evaluates and compares the scalability of
the XT3 and XT4. Kernel benchmarks are used to verify and to quantify the performance differences
between the systems. Application benchmarks are used to examine the impact of these differences on
scalability. Both kernel and application benchmarks are used to identify how to use the systems most
efficiently.

1 Introduction

The National Center for Computational Sciences at
Oak Ridge National Laboratory (ORNL) is the site
of an XT3 with 5212 compute nodes and an XT4
with 6296 compute nodes. For both systems the
compute node contains a dual core AMD Opteron
processor running at 2.6 GHz and 4 GB of mem-
ory. The interconnect for both systems is a cus-
tom, three-dimensional (3D) toroidal network uti-
lizing the Cray SeaStar network interface controller
(NIC) to connect the compute node, via Hyper-
Transport, with the network.

Both systems use the Catamount light-weight
kernel operating system on the compute nodes and
a Linux-based operating system on the service and
login nodes. Catamount supports two execution
modes: SN (single/serial node) mode, in which only
one core is active, and VN (virtual node) mode, in
which both cores are active. In SN mode, the active
core has full access to all of the memory in the com-
pute node. In VN mode, the memory is partitioned
and each core has access to half of the node mem-
ory. In VN mode, one core (“core 0”) is responsible
for NIC access, while the other core (“core 1”) inter-
rupts core 0 to handle internode communication on
its behalf. Communication between user processes
running on core 0 and core 1 (in the same node) is
implemented with memory copies.

The XT3 and XT4 differ in two ways that af-

fect performance. First, the XT3 compute node
uses DDR-400 memory, while the XT4 compute
node uses DDR2-667 memory, representing effective
memory bandwidths to each core of 6.4 GB/s and
10.6 GB/s, respectively. Second, the XT3 uses the
SeaStar NIC, while the XT4 uses the SeaStar2 NIC.
The SeaStar2 increases the peak network injection
bandwidth of each node from 2.2 GB/s to 4 GB/s
when compared to SeaStar, and increases the sus-
tained network performance from 4 GB/s to 6 GB/s.

In March 2007, the ORNL XT3 and XT4 systems
were combined into a single (heterogeneous) system.
The default is that jobs submitted to this system
are assigned whatever nodes are available, possibly
mixing XT3 and XT4 nodes. However, the user can
request that jobs run on only XT3 nodes or on only
XT4 nodes. Some of the data presented in this paper
were collected on the XT3 and XT4 systems before
the merger, but the majority were collected on the
combined system using either XT3-only or XT4-only
compute nodes and identical versions of the system
software.

This paper examines the performance character-
istics of the XT3 and of the XT4, focusing on the
impact of the system differences on application scal-
ability. Kernel benchmarks are used to verify and to
quantify the system differences. Application codes
drawn from the climate community are used to ex-
amine scalability on the two systems, as well as to
identify the performance impact of SN vs. VN mode
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and the performance impact of a number of runtime
options.

Note that in the remainder of this paper we
use the terms (processor) core and processor inter-
changeably, referring to each core as a processor.

2 Methodology

Data for most experiments were collected in April
2007 using version 6.1.6 of the Portland Group com-
pilers and version 1.5.31 of the Cray Programming
Environment. Kernel and application benchmarks
use the Message Passing Interface (MPI) [9] for in-
terprocessor communication. One kernel benchmark
also measures communication performance when us-
ing SHMEM [8].

There are number of compile and runtime op-
tions that affect performance. The options consid-
ered most often in this paper are as follows.

1. Compiler flags. We examined compiler opti-
mization options including the default, -O2,
-O3, -fast, -fastsse, -Mipa=fast, and com-
binations of these. See the pgf90 com-
piler documentation for descriptions of these
flags [17].

2. Page size. The default page size is 2 MB.
Specifying -small pages when submitting a
job changes the page size to 4 KB.

3. Mode. We examined performance for both SN
and VN modes.

4. Process placement. We used the
MPICH RANK REORDER environment variable to
choose different algorithms for mapping logical
processes to processors when running in VN
mode. For example, assume that we want to
run using 8 processors (on 4 nodes). The de-
fault option assigns processes 0 and 4 to node
0, processes 1 and 5 to node 1, etc. (wrap
placement). Option 1 assigns processes 0 and
1 to node 0, processes 2 and 3 to node 1, etc.
(SMP-style placement). Option 2 assigns pro-
cesses 0 and 7 to node 0, processes 2 and 6 to
node 1, etc. (folded rank placement). Option
3 allows the user to specify a custom assign-
ment. In this paper we focus on the wrap and
SMP-style placement options.

5. MPI collectives. We examined the impact of
setting the MPI COLL OPT ON environment vari-
able. According to the MPI man page, this

“enables collective optimizations using non-
default, architecture specific algorithms for
some MPI collective operations.”

6. MPI memory copy. We examined the impact
of setting the MPICH FAST MEMCPY environment
variable. According to the MPI man page,
this “enables an optimized memcpy routine in
MPI.”

3 Kernel Benchmarks

The following kernel benchmarks are used to deter-
mine the performance characteristics of system sub-
systems in ways easily interpreted in the context of
application codes. We focus in particular on deter-
mining ways to use the systems most efficiently, and
on determining whether the same best practices ap-
ply equally to the XT3 and to the XT4.

3.1 DGEMM
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Figure 3.1: Matrix Multiply (DGEMM)
Performance

Figure 3.1 describes the double-precision floating
point performance of a matrix multiply using the
DGEMM [7] routine from the Cray libsci library.
Matrix multiply has a high ratio of floating point
operations to operands and good register and cache
locality, when implemented carefully. A DGEMM
benchmark is often used to define the “achieveable
peak performance” of a processor. As the XT3 and
XT4 use the same processor, we would expect lit-
tle difference between the performance on the two
systems for this benchmark.

Figure 3.1 contains graphs for two experiments
for each system, one executing the benchmark on
a single core and the other executing two instances
of the benchmark, simultaneously, one on each core.
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The second experiment measures the performance
impact of resource contention, if any, caused by run-
ning the experiment on both cores. For the two-core
experiments, the lowest observed computation rate
for each matrix size is reported.

There is little performance difference between the
four DGEMM experiments, each achieving approxi-
mately 4.6 GFlop/s, or 88% of the 5.2 GFlop/s peak
performance for the Opteron processor. What differ-
ences there are indicate a slight performance advan-
tage for using the XT4 over the XT3 and for using
only one core instead of both cores, both consistent
with differences in memory performance.

Note that the optimal performance was achieved
by using the default page size. Running with
-small pages degraded performance by approxi-
mately 1%.

3.2 PSTSWM

The Parallel Spectral Transform Shallow Water
Model (PSTSWM) [21, 23] represents an important
computational kernel in spectral global atmospheric
models. PSTSWM exhibits little reuse of operands
as it sweeps through the field arrays; thus it exercises
the memory subsystem as the problem size is scaled
and can be used to evaluate the impact of memory
contention in multi-core nodes. PSTSWM is also a
parallel algorithm testbed, and all array sizes and
loop bounds are determined at runtime.

We began by examining the impact of compiler
flags and page size on performance. For PSTSWM,
compiling with -fast improved performance by a
factor of 2 to 3 compared to the default optimiza-
tion. All optimization levels at least as high as
-O2 achieved identical performance. Page size did
not affect performance significantly. These results
hold for both the XT3 and XT4, and for both SN
and VN modes. For the experimental data de-
scribed below we compiled with -fast and ran with
-small pages.

Figure 3.2 compares PSTSWM performance be-
tween the XT3 and the XT4. In the first graph com-
parisons are presented as computation rate versus
horizontal resolution for a fixed number of vertical
levels (18). The problem sizes T5, T10, T21, T42,
and T85 are horizontal resolutions. Each computa-
tional grid in this sequence is approximately 4 times
larger than its predecessor. The second graph in
Fig. 3.2 compares the computation rate for a single
horizontal resolution (T85) for a range of numbers
of vertical levels. As with DGEMM, data from two
experiments are examined: performance when us-

ing a single core and performance when using both
cores to run independent instances of the PSTSWM
benchmark simultaneously.

The difference in XT3 and XT4 memory perfor-
mance has a clear impact on PSTSWM performance
in these studies, as does contention for memory when
using both cores. Note that the impact of memory
contention is qualitatively the same for the XT3 and
the XT4, for example, degrading performance for
T85 with 88 levels by 27% and 25%, respectively.
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Figure 3.2: Serial Performance of PSTSWM

3.3 COMMTEST

COMMTEST is a suite of codes developed at ORNL
that measure the performance of MPI interproces-
sor communication. COMMTEST differs somewhat
from other MPI benchmark suites in its focus on de-
termining the performance impact of communication
protocol and packet size in the context of “common
usage”. However, the performance we report here
should be similar to that measured using other in-
terprocessor communication benchmarks.

Experiments were of two types: measuring com-
munication performance between two processors and
measuring communication performance between two



4 Proceedings of the 49th Cray User Group Conference, May 7-10, 2007

subsets of processors, where pairs of processors, one
in one subset and one in the other, are communicat-
ing simultaneously. The benchmark measures both
bidirectional performance, using a “ping-ping” com-
munication pattern, and undirectional performance,
using half the roundtrip time in a “ping-pong” com-
munication pattern.

In the results described below, the benchmarks
were compiled with -fast optimization and run with
-small pages. We also used SMP-style process
placement, as this process placement was most com-
patible with the ordering assumed by the benchmark
when evaluating the impact of contention in commu-
nication performance. The results reported are the
optimal performance observed over all communica-
tion protocols.

We experimented with the setting the
MPICH FAST MEMCPY environment variable, but it
had no performance impact in these experiments.
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Figure 3.3: MPI Bidirectional Bandwidth on the
XT4

Figure 3.3 describes bidirectional communication
performance on the XT4 when communicating be-
tween two processors (0 and 1), between two sub-
sets each with two processors (processor 0 commu-

nicating with processor 2 and processor 1 communi-
cating with processor 3), and between two subsets
each with 64 processors (processor i communicat-
ing with processor (i + 64), i = 0, . . . , 63). For ex-
periments involving multiple pairs of processes, the
lowest per pair bandwidth is reported. The allo-
cation of the nodes used in these experiments was
not controlled, but the default allocation algorithm
attempts to allocate nodes that are “contiguous” in
the network topology. Experiments were run in both
SN and VN modes, and the 0-1 experiment for VN
mode measured communication between processors
(cores) within a node. The first graph in the figure
uses log-linear axes, while the second displays the
same data for message sizes up to 10,000 bytes us-
ing log-log axes. From these results, SN mode 0-1
internode communication achieves twice the perfor-
mance of VN mode 0-1 intranode communication.
Note that both processors in one node communicat-
ing with both processors in a neighboring node (also)
achieves half the per pair bandwidth as the SN mode
0-1 intranode communication, which is equivalent
to achieving the same aggregate bandwidth between
the two nodes. The two-pair SN mode experiments
demonstrate link contention, as do the 64-pair SN
and VN mode experiments. In other experiments,
not described here, the link contention can be shown
to be a function of the 3D torus interconnect, but
this behavior is not something that most users will
be able to exploit when optimizing their codes.

The second graph in Figure 3.3 shows that purely
intranode communication has the lowest latency, but
that simultaneous communication with both proces-
sors in one node to both processors in a different
node has twice the latency as when only one proces-
sor per node is communicating.
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Figure 3.4 shows XT3 data for the same experi-
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ments. The small message size performance is very
similar to that on the XT4, and the log-log plot is
omitted. For large message sizes, the XT4 communi-
cation bandwidth is between 1.5 and 2 times greater
than that on the XT3. Interestingly, the two-pair SN
mode performance is identical to that of the single
pair SN mode performance on the XT3, indicating
that the SeaStar in the XT3 is not able to saturate
the shared network link in this experiment, while the
SeaStar2 in the XT4 can. Otherwise, the XT3 and
XT4 experiments are similar qualitatively.
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Figure 3.5 shows unidirectional communication
performance for the single pair experiments on the
XT3 and XT4 and for SN and VN modes. For large
message sizes, the XT4 achieves twice the bandwidth
of the XT3, for both intra- and internode commu-
nication. Internode unidirectional bandwidth is half
that of the bidirectional bandwidth for all message
sizes, while intranode bandwidth is unchanged (in-
dicating that the memory copies used to implement
intranode communication are not bidirectional, pos-
sibly because copies in both directions are initiated
by core 0). For small message sizes, the XT3 and
XT4 demonstrate similar unidirectional communi-
cation performance.

Data from the COMMTEST benchmarks also in-
dicate the communication protocols that achieve the
optimal performance. The following results hold for
both the XT3 and the XT4.

• For a single pair (0-1):

– For large message sizes, performance is
relatively insensitive to choice of proto-
col.

– For small message sizes, the best protocol
is MPI Isend/MPI Recv for SN mode and
MPI Sendrecv for VN mode.

• For 64 pairs simultaneously:

– For large message sizes, performance is
optimized by preposting receives and us-
ing ready sends (for both SN and VN
modes).

– For small message sizes, MPI Sendrecv is
competitive for both SN and VN modes.

3.4 HALO

The HALO benchmark [18] simulates the nearest
neighbor exchange of a 1-2 row/column “halo” from
a two-dimensional (2D) array. This is a common
operation when using domain decomposition to par-
allelize, for example, a finite difference ocean model.
There are no actual 2D arrays used, but instead the
copying of data from an array to a local buffer is sim-
ulated and this buffer is transferred between nodes.
HALO is actually a suite of benchmarks, implement-
ing the basic halo exchange operator utilizing a num-
ber of different messaging layers, and a number of
different implementations for each layer.

We first use the HALO benchmark suite to ex-
amine which MPI-1 communication protocol is most
efficient, and also to compare MPI-1 with SHMEM.
The first graph in Figure 3.6 plots the results when
using -fast compiler optimization and VN mode,
-small pages, and SMP-style process placement
runtime options on 16 processors of the XT4. The
x-axis indicates the number of 4 byte words in a
single row or column in the halo. Here the fo-
cus is on small (latency dominated) halo exchanges,
as data (not shown) indicates that achieved band-
width for large halo exchanges is the same for all
MPI protocols. Persistent MPI protocols are also
tested by the HALO benchmark suite, and the per-
formance for these protocols was identical to the
nonpersistent equivalents. The data from running
on the XT3 and XT4, from running in SN and
VN modes, and from running with and without
-small pages are all qualitatively similar, with the
isend/irecv protocol achieving the best perfor-
mance in all cases. However, the performance com-
parison is somewhat different when using the (de-
fault) wrap process placement, as indicated in the
second graph in Fig. 3.6 . Here isend/irecv is
the worst MPI-1 protocol for a range of halo sizes,
and performance is worse overall compared to using
SMP-style process placement. The wrap placement
results are also qualitatively the same for the XT3
and XT4, for SN and VN modes, and for large and
small page sizes.
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These data show that process placement can
change performance characteristics, and it is impor-
tant to take this into account when optimizing codes.
These data also indicate that SHMEM performance
in not competitive with MPI in this benchmark on
the XT3 and XT4. Note that the HALO benchmark
examines a number of different SHMEM implemen-
tations. We described only the best SHMEM results.

Figure 3.7 is a comparison of HALO exchange
performance between the XT3 and XT4 and between
SN and VM node modes when using the optimal
MPI-1 protocol and SMP-style process placement.
Small pages were used in these experiments, but the
data is nearly identical to those collected using large
pages. These data indicate that, for small halo ex-
changes, performance is identical on the XT3 and
XT4. For large haloes, the improved memory and
network bandwidth on the XT4 gives the XT4 a fac-
tor of 1.5 performance improvement over the XT3.
SN mode performance is better than VN mode for
all halo exchange sizes, by a factor of two for small
haloes and a factor of 1.6 for the largest haloes, on
both the XT3 and the XT4.

600

400

200

100

80

60

40
 1  10  100  1000

M
ic

ro
se

co
nd

s

Words

XT4, 16 proc., VN,
 SMP-style map
SHMEM (best)  
MPI sendrecv   
MPI irecv/isend
MPI isend/irecv

200

100

80

60

40
 1  10  100  1000

M
ic

ro
se

co
nd

s

Words

XT4, 16 proc., VN,
 wrap map

MPI sendrecv   
MPI irecv/isend
MPI isend/irecv

Figure 3.6: HALO Protocol Performance
Comparison

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000  100000  1e+06  1e+07

M
ic

ro
se

co
nd

s

Words

16 proc., SMP-style map
XT3 (VN)
XT4 (VN)
XT3 (SN)
XT4 (SN)

Figure 3.7: HALO Performance Comparison

3.5 Kernel Summary

Qualitatively, performance is very similar on the
XT3 and the XT4, with identical optimal compile-
time and runtime optimizations, and identical opti-
mal interprocessor communication options. The im-
proved memory bandwidth and network bandwidth
on the XT4 are clearly evident in the data from the
PSTSWM, COMMTEST, and HALO benchmarks.

4 Application Benchmarks

The following benchmarks are used to verify the ker-
nel results in the context of full application codes.
The kernel results are also used to help understand
the application performance data.

4.1 CAM

The Community Atmosphere Model (CAM) is a
global atmosphere circulation model developed at
the National Science Foundation’s National Center
for Atmospheric Research with contributions from
researchers funded by the Department of Energy and
by the National Aeronautics and Space Administra-
tion [3, 4]. CAM is used in both weather and cli-
mate research. In particular, CAM serves as the
atmospheric component of the Community Climate
System Model (CCSM) [1, 5].

CAM is a mixed-mode parallel application code,
using both MPI and OpenMP protocols [6]. CAM’s
performance is characterized by two phases: dynam-
ics and physics. The dynamics phase advances the
evolution equations for the atmospheric flow. The
physics phase approximates subgrid phenomena, in-
cluding precipitation processes, clouds, long- and
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short-wave radiation, and turbulent mixing [4]. Con-
trol moves between the dynamics and the physics at
least once during each model simulation timestep.
The number and order of these transitions depend
on the numerical algorithms used in the dynamics.

CAM includes three dynamical cores (dycores),
one of which is selected at compile-time: a spec-
tral Eulerian solver [12], a spectral semi-Lagrangian
solver [19], and a finite volume semi-Lagrangian
solver [13]. The following experiments describe re-
sults for both the spectral Eulerian and the finite
volume dycores.

As a community model, it is important that
CAM run efficiently on different architectures, and
that it be easily ported to and optimized on new
platforms. CAM contains a number of compile-time
and runtime parameters that can be used to opti-
mize performance for a given platform, problem or
processor count [14, 15, 20]. The options examined
in this paper are as follows.

• Physics load balancing. Grid points with a
given horizontal location, differing only in the
vertical coordinate, are referred to as a col-
umn. The current physical parameterizations
in CAM are based on columns, and physics
computations at a given timestep are indepen-
dent between columns. The time required to
process a column is a function of geographi-
cal location and simulation time, and excel-
lent static load balancing schemes are known.
However, the best load balancing scheme is
at odds with the domain decompositions uti-
lized by the dycores, thus requiring significant
interprocessor communication to implement.
Two options are considered here: no load bal-
ancing (and no interprocessor communication)
and the optimal load balancing (requiring all
processors to communicate with all other pro-
cessors).

• Communication protocol for load balancing.
The communication protocol used to imple-
ment the interprocessor communication re-
quired by the load balancing scheme is a run-
time option. On the Cray XT systems su-
ported options include MPI Alltoallv and 19
different MPI two-sided point-to-point imple-
mentations.

• Communication protocols for spectral dynam-
ics. Within each call of the spectral dynam-
ics, computation moves back and forth be-
tween a longitude-latitude-vertical grid point
space and the spectral coefficient space. The

dependencies in the transforms between these
two spaces require changing the decomposi-
tion from one-dimensional (1D) over latitude
to 1D over longitude and back again. The
communication protocols used to implement
interprocess communication within the spec-
tral dynamics are also runtime options, with
the same choices available as for the physics
load balancing.

For the spectral Eulerian dycore we used version
3.0p1 of CAM, available from

http://www.ccsm.ucar.edu/models/atm-cam/

and a benchmark problem with a longitude-latitude-
vertical grid of size 256×128×26 and a wavenumber-
latitude-vertical grid of size 85 × 128 × 26. This
problem resolution is referred to as T85L26. This
is the same problem resolution and CAM dycore as
used in the CCSM for the fourth IPCC (Intergovern-
mental Panel on Climate Change) assessments [10].
Because the spectral dycore supports only a 1D de-
composition over latitude, the number of MPI pro-
cesses cannot be greater than 128 for this problem.
However more than 128 processors can be used if
OpenMP parallelism is exploited. As OpenMP is
not supported on either the XT3 or XT4 currently,
we are severely limited in the number of processors
that we can use for this benchmark. To address this
problem, we modified the code, as follows. In runs
with the spectral dynamics, the time spent in the
physics is typically twice that spent in the dynam-
ics. The physics also supports an arbitrary 2D de-
composition. To expose more parallelism, we modi-
fied version 3.0p1 to support using different numbers
of processors in the dynamics and in the physics.
For example, when allocating 256 processors, the
dynamics would still use only 128 processors but
the physics would be able to use all 256 processors.
(This mimics the hybrid MPI/OpenMP implemen-
tation in that the dynamics exhibits little OpenMP
parallelism after exploiting the full MPI parallelism.)
This approach works only if physics load balancing is
enabled, allowing work to be redistributed between
the dynamics and physics phases. When deciding to
run the dynamics on a subset of P processors, the
question arises as to which P processors to use. Two
options are examined here: (1) {0, . . . , P−1} (stride
1) and (2) {0, 2, . . . , 2P − 2} (stride 2). When using
the stride 2 option with SMP-style process place-
ment and VN mode, only one processor will be ac-
tive per node, essentially computing the dynamics
in SN mode.
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Figure 4.1: CAM Performance for T85L26
Benchmark

Figure 4.1 is a graph of the performance of the
modified version of CAM 3.0p1 when compiled with
-fast and run with -small pages and SMP-style
process placement. In these experiments, MPI col-
lectives were used to implement the physics load bal-
ancing and dynamics domain decomposition remap-
ping. These data demonstrate that increasing the
number of processors assigned to the physics enables
scaling beyond 128 processors, even though the dy-
namics is still limited to 128-way parallelism. Load
balancing, even with the additional communication
overhead, is a performance enhancement up to 128
processors (and is a requirement for using more than
128 processors). Using stride 2 dynamics processor
subsetting improves performance by 12% when com-
pared to using stride 1. Even with stride 2, SN mode
is 10% to 15% faster than VN mode. Both results in-
dicate that the memory contention and/or the MPI
performance degradation observed in the kernel ex-
periments affects CAM performance in VN mode.
Note that the results are qualitatively the same on
the XT3 and the XT4, though performance on the
XT4 is superior.
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Figure 4.2: Performance Optimization for
T85L26 Benchmark

In an attempt to further improve CAM perfor-
mance, we experimented with replacing MPI collec-
tive calls with point-to-point implementations. Fig-
ure 4.2 is a graph of the performance when replacing
just the MPI Alltoallv used in the physics load bal-
ancing communication with a point-to-point imple-
mentation based on an MPI Isend/MPI Recv com-
munication protocol. (Other protocols were slower
in these experiments.) The point-to-point imple-
mentation is faster than the MPI collective imple-
mentation for the largest processor count, and is as
fast for all of the other processor counts. Note that
the collectives in the dynamics never involve more
than 128 processors, which is probably why it was
not advantageous to replace the collectives within
the dynamics with point-to-point implementations.
Though not shown, similar results were observed in
experiments on the XT3.
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Figure 4.3: Phase Analysis for T85L26
Benchmark

Figure 4.3 is a phase analysis, comparing the cost
of the dynamics phase and the cost of the dynamics-
physics coupling for the best performing SN and VN
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mode experiments on the XT4. Note that the cost
of the dynamics-physics coupling is dominated by
the cost of the interprocessor communication used
to implement physics load balancing. Here, the dy-
namics cost is constant when using more than 128
processors and is identical for SN and VN modes, as
hoped. The coupling cost is still decreasing for SN
mode, but appears to have reached a lower bound
for VN mode, reflecting the usual MPI performance
degradation observed in VN mode. The point-to-
point implementation was used in the coupling phase
when using 512 processors. When using the MPI
collective implementation, the cost of the coupling
phase is 50% greater for 512 processors than for 256
processors for both SN and VN modes. A similar
analysis holds for experiments on the XT3.

To benchmark the finite volume dycore we used
version 3.1 of CAM, available from the same loca-
tion as version 3.0p1. Our benchmark problem uses
a 361 × 576 horizontal computational grid with 26
vertical levels. This resolution is referred to as the
“D-grid”. While the D-grid resolution is greater
than that used in current computational climate ex-
periments, it represents a resolution of interest for
future experiments. The finite volume dycore sup-
ports both a 1D latitude decomposition and a 2D
decomposition of the computational grid. The 2D
decomposition is over latitude and longitude during
one phase of the dynamics and over latitude and ver-
tical in another phase, requiring two remaps of the
domain decomposition each timestep. For small pro-
cessor counts the 1D decomposition is faster than the
2D decomposition, but the 1D decomposition must
have at least three latitudes per MPI task and, so, is
limited to a maximum of 120 MPI tasks for the D-
grid benchmark. Using a 2D decomposition requires
at least three latitudes and three vertical layers per
MPI task, so is limited to 960 MPI tasks for the
D-grid benchmark. As with the spectral dycores,
OpenMP can be used to exploit multiple processors
per MPI task, on systems that support OpenMP.
Unlike for the spectral dycores, the dynamics for the
finite volume dycore is typically twice as expensive
as the physics. Thus there is little to be gained by
using more processors in the physics than in the dy-
namics, and we have not used the modification de-
scribed earlier in the D-grid benchmark experiments.

Figure 4.4 is a graph of CAM performance for the
D-grid benchmark. Here CAM was compiled with
-fast and run with -small pages, SMP-style pro-
cess placement, and physics load balancing. All ex-
periments were also run using large pages, but small
pages improved performance by a small amount.

MPI collectives were used in the physics load bal-
ancing. Interprocessor communication within the fi-
nite volume dynamics is handled by a dycore-specific
messaging layer utilizing point-to-point MPI com-
mands, and the optimal settings were used in the
results described here.
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Figure 4.5: Phase Analysis for D-grid Benchmark

As with the other benchmarks, performance on
the XT3 and XT4 are qualitatively identical. SN
mode is faster than VN mode for the same number of
processors, and the runs on the XT4 are faster than
runs on the XT3. Performance is continuing to scale
out to the limit of the algorithmic parallelism. Fig-
ure 4.5 is a phase analysis for the XT4 experiments.
(Results for the XT3 are similar.) Here physics is
continuing to scale, but the dynamics phase appears
to have reached a lower bound. Note that in this
phase analysis, the dynamics-physics coupling is in-
cluded in the physics phase, and comprises 13% (SN)
and 17% (VN) of the physics cost for the maximum
number of processors. Unlike the T85L26 bench-
mark results, the cost of this coupling is not increas-
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ing for the largest processor counts, and the MPI
collective implementation is scaling well. In future
work, we will examine in more detail the perfor-
mance of the communication protocols used in the
finite volume dynamics, and experiment with point-
to-point implementations of the dynamics-physics
coupling, but nothing in the current benchmark data
indicates that these types of optimization will im-
prove performance significantly for this benchmark.

4.2 POP

The Parallel Ocean Program (POP) [16, 11] is a
global ocean circulation model developed and main-
tained at Los Alamos National Laboratory (LANL).
It is used for high resolution studies and as the ocean
component in the CCSM. The code is based on a
finite-difference formulation of the 3D flow equa-
tions on a shifted polar grid. POP performance
is characterized by the performance of a baroclinic
phase and a barotropic phase. The 3D baroclinic
phase scales well on all platforms due to its limited
nearest-neighbor communication. In contrast, the
barotropic phase is dominated by the solution of a
2D, implicit system, whose performance is very sen-
sitive to network latency and typically scales poorly
on all platforms. For our evaluation we used ver-
sion 1.4.3 of POP with a few additional parallel al-
gorithm tuning options (due to Yoshida) [22]. The
current production version of POP is version 2.0.1.
While version 1.4.3 and version 2.0.1 have similar
performance characteristics, the intent here is to use
version 1.4.3 to evaluate system performance char-
acteristics, not to evaluate the performance of POP.

We consider results for the one tenth degree
benchmark problem. This is a displaced-pole grid
with the pole of the grid shifted into Greenland to
avoid computations near these singular points. The
grid resolution is 0.1 degree (10km) around the equa-
tor, increasing to 2.5km near the poles, utilizing
a 3600 × 2400 horizontal grid and 40 vertical lev-
els. This resolution resolves eddies for effective heat
transport and is used for ocean-only or ocean and
sea ice experiments.

We examined a number of different com-
pile and runtime options in our initial optimiza-
tions. For the following experiments we speci-
fied -Kieee -O3 -fastsse -tp k8-64 when com-
piling and -small pages and SMP-style process
placement when running the following experiments.
None of these settings were strong optimums, and
experiments using -fast, default process place-
ment and large pages demonstrated comparable per-

formance. We also experimented with defining
MPI COLL OPT ON and MPICH FAST MEMCPY, but ob-
served no improvement in performance.
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Figure 4.6: POP Performance Comparison

Figure 4.6 compares the performance of POP on
the XT3 and XT4 and when running in SN and
VN modes. SN mode is significantly faster than VN
mode for the same number of processors. However,
running in VN mode is faster than in SN mode for
the same number of compute nodes, which is the
relevant metric since POP’s performance scalability
allows us to use the entire system for this bench-
mark problem. Running on the XT4 is also faster
than running on the XT3, though the advantage is
small for large processor counts.

Figure 4.7 compares the performance of the POP
baroclinic and barotropic phases on the XT3 and
XT4 and when running in SN and VN modes. As
expected, the baroclinic phase scales very well. The
XT4 is faster than the XT3 for this phase, and SN
mode is faster than VN mode, both explained by the
faster computational rate enabled by the improved
memory performance of the XT4 and of SN mode. In
contrast, the cost of the barotropic phase is at best
constant for VN mode, and approaching that for SN
mode. This phase is also subject to performance
perturbations. SN mode is much faster than VN
mode for the barotropic phase, and POP runtime in
VN mode is dominated by the barotropic runtime
when using more than 5000 processors. The XT4
demonstrates a slight performance advantage over
the XT3, on average, for the barotropic phase.
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Figure 4.7: POP Baroclinic and Barotropic
Performance Comparison

Results from both the COMMTEST and HALO
microkernels indicate much lower internode latency
in SN mode than in VN mode. As performance
of the barotropic phase is dominated typically by
latency-sensitive calls to MPI Allreduce, this per-
formance characteristic appears to explain the sig-
nificant advantage of SN mode over VN mode for
this phase. We used this insight to develop the fol-
lowing optimization for when running in VN-mode:

• During initialization, create a subcommunica-
tor made up of all core 0 processors.

• Replace the call to MPI Allreduce in the
barotropic phase with the following.

– Core 1 sends its local sum to core 0 on the
same node. Core 0 adds the contribution
from core 1 to its local sum.

– All of the core 0 processors call
MPI Allreduce, using the “core 0” sub-
communicator.

– Core 0 sends the results to the core 1 on
the same node.

Using this algorithm, the MPI Allreduce in the
barotropic phase is partially run in SN mode, while
the rest of the code runs in VN mode. Performance
of the modified algorithm is shown in Fig. 4.8. Fig-
ure 4.9 compares the performance of the barotropic
phase of the modified and unmodified algorithms.
While not identical to SN mode performance, it is a
significant improvement.
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Figure 4.8: Performance of POP Using Modified
Algorithm
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Using Modified Algorithm

Version 2.0.1 of POP has options not available
in version 1.4.3. One of these is the ability to run
the barotropic phase on a subset of the processors.
While not supported currently, version 2.0.1 could
be modified to allow that subset to be all core 0 pro-
cessors, eliminating the overhead of the additional
communication between core 0 and core 1 before ev-
ery call to MPI Allreduce in the current modified
algorithm. A new overhead will be the cost of the
mapping to the barotropic decomposition, but this
happens only once per barotropic call and should be



12 Proceedings of the 49th Cray User Group Conference, May 7-10, 2007

cheaper than the current approach. Another opti-
mization is the Chronopoulos-Gear (C-G) variant [2]
of the Conjugate Gradient algorithm. C-G uses half
the number of inner products as the standard al-
gorithm, thus calling MPI Allreduce half as many
times during the barotropic phase. We backported
this algorithm into version 1.4.3. Combining the C-
G algorithm with the modified MPI Allreduce algo-
rithm, we were able to increase POP version 1.4.3
throughput by a factor of 1.6, as shown in Fig-
ure 4.10. Note that results for 10,000 processors for
SN mode and 22,500 processors for VN mode include
both XT3 and XT4 compute nodes.
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Variants

4.3 Application Benchmark Sum-
mary

Using the results of the kernel benchmark experi-
ments, we were able to interpret and optimize the
performance of both the CAM and POP bench-
marks. In particular, understanding the impact of
VN mode on MPI latency led to the development
of SN mode equivalent algorithms for the spectral
dynamics in CAM and for the MPI Allreduce algo-
rithm as used in the barotropic phase in POP.

5 Conclusions

Kernel benchmarking provided the following insights
into XT3 and XT4 performance.

1. Data from the DGEMM benchmark experi-
ments showed the expected agreement between
the XT3 and the XT4, due to their using the
same processor. The small performance differ-
ences are explained by the differences in mem-

ory performance between the XT3 and XT4
and when using one or both cores.

2. Data from the PSTSWM benchmark experi-
ments demonstrated that the performance im-
pact due to differences in memory performance
(XT3 vs. XT4 and single core vs. dual core)
can be significant for realistic computational
kernels.

3. Data from COMMTEST benchmark exper-
iments quantified the performance improve-
ment from replacing the SeaStar NIC with
the SeaStar2. The maximum bidirectional
bandwidth in the two-pair VN mode exper-
iments was exactly half that for the single
pair SN mode experiment, indicating that the
same maximum internode bandwidth was be-
ing achieved in both modes. The VN mode la-
tency for the same experiment was double that
for SN mode, a performance degradation that
was also observed in the application bench-
marking. The communication protocol eval-
uations provided guidance in the application
benchmark optimizations.

4. Data from the HALO benchmark experiments
provided additional information on the perfor-
mance sensitivities of the different MPI com-
munication protocols. These experiments also
demonstrated the performance sensitivity of
process placement in VN mode, both in achie-
veable performance and in determining opti-
mal communication protocols.

These results guided the benchmarking, analy-
sis, and optimization of the application benchmarks.
In particular, based on our understanding of the
performance impact of communication protocol, SN
vs. VN mode, and process placement, we were
able to improve significantly the scalability of two
of the application benchmark problems. The other
benchmark problem already demonstrated reason-
able scalability to the limit of its algorithmic paral-
lelism. Overall, performance scalability on the XT3
and XT4 is good, if the indicated sources of per-
formance degradation are avoided. For all bench-
marks, XT3 and XT4 performance characteristics
were qualitatively identical, with good optimization
strategies on one system also being good on the
other.

The data presented in this paper did not
indicate any advantage to using compiler opti-
mization levels higher than -fast, nor any ad-
vantage to defining the environment variables
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MPI COLL OPT ON and MPICH FAST MEMCPY. Also,
running with -small pages did not affect perfor-
mance significantly (positively or negatively). How-
ever, these results are application-specific, and could
easily change if using different versions of the compil-
ers and programming environment. In other experi-
ments, not reported here, defining MPI COLL OPT ON
improved performance of an MPI Allreduce when
using an inefficient choice of process placement, ef-
fectively making the performance of the collective
insensitive to the MPICH RANK REORDER setting. Our
experience with process placement showed an ad-
vantage to SMP-style placement, if only because it
simplified our algorithm development. In another
benchmark not presented here, one using the PETSc
library to solve a linear system, SMP-style process
placement degraded performance significantly com-
pared to using wrap placement. In summary, de-
velopers and users should examine (and re-examine)
these optimization options in the context of their
own codes and benchmark problems.

6 Acknowledgements

This research used resources (Cray XT3 and Cray
XT4) of the National Center for Computational Sci-
ences at Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. De-
partment of Energy under Contract No. DE-AC05-
00OR22725.

7 About the Author

Patrick H. Worley is a senior R&D staff member
in the Computer Science and Mathematics Division
of Oak Ridge National Laboratory. His research
interests include parallel algorithm design and im-
plementation (especially as applied to atmospheric
and ocean simulation models) and the performance
evaluation of parallel applications and computer sys-
tems. Worley has a PhD in computer science from
Stanford University. He is a member of the Associ-
ation for Computing Machinery and the Society for
Industrial and Applied Mathematics.
E-mail: worleyph@ornl.gov.

References

[1] M. B. Blackmon, B. Boville, F. Bryan,
R. Dickinson, P. Gent, J. Kiehl,
R. Moritz, D. Randall, J. Shukla,
S. Solomon, G. Bonan, S. Doney,

I. Fung, J. Hack, E. Hunke, and J. Hur-
rel, The Community Climate System Model,
BAMS, 82 (2001), pp. 2357–2376.

[2] A. Chronopoulos and C. Gear, s-step iter-
ative methods for symmetric linear systems, J.
Comput. Appl. Math., 25 (1989), pp. 153–168.

[3] W. D. Collins, P. J. Rasch, B. A.
Boville, J. J. Hack, J. R. McCaa, D. L.
Williamson, B. P. Briegleb, C. M. Bitz,
S.-J. Lin, and M. Zhang, The Formulation
and Atmospheric Simulation of the Community
Atmosphere Model: CAM3, Journal of Climate,
19(11) (2006).

[4] W. D. Collins, P. J. Rasch, and et. al.,
Description of the NCAR Community Atmo-
sphere Model (CAM 3.0), NCAR Tech Note
NCAR/TN-464+STR, National Center for At-
mospheric Research, Boulder, CO 80307, 2004.

[5] Community Climate System Model.
http://www.ccsm.ucar.edu/.

[6] L. Dagum and R. Menon, OpenMP: an
industry-standard API for shared-memory pro-
gramming, IEEE Computational Science & En-
gineering, 5 (1998), pp. 46–55.

[7] J. Dongarra, J. D. Croz, I. Duff, and
S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Soft-
ware, 16 (1990), pp. 1–17.

[8] K. Feind, Shared Memory Access (SHMEM)
Routines, in CUG 1995 Spring Proceedings, R.
Winget and K. Winget, ed., Eagen, MN, 1995,
Cray User Group, Inc., pp. 303–308.

[9] W. Gropp, M. Snir, B. Nitzberg, and
E. Lusk, MPI: The Complete Reference, MIT
Press, Boston, 1998. second edition.

[10] Intergovernmental Panel on Climate
Change. http://www.ipcc.ch/.

[11] P. W. Jones, P. H. Worley, Y. Yoshida,
J. B. White III, and J. Levesque, Prac-
tical performance portability in the Parallel
Ocean Program (POP), Concurrency and Com-
putation: Practice and Experience, 17 (2005),
pp. 1317–1327.

[12] J. T. Kiehl, J. J. Hack, G. Bonan, B. A.
Boville, D. L. Williamson, and P. J.
Rasch, The National Center for Atmospheric
Research Community Climate Model: CCM3,
J. Climate, 11 (1998), pp. 1131–1149.



14 Proceedings of the 49th Cray User Group Conference, May 7-10, 2007

[13] S.-J. Lin, A ‘vertically Lagrangian’ finite-
volume dynamical core for global models, Mon.
Wea. Rev., 132 (2004), pp. 2293–2307.

[14] A. Mirin and W. B. Sawyer, A scalable im-
plemenation of a finite-volume dynamical core
in the Community Atmosphere Model, Interna-
tional Journal of High Performance Computing
Applications, 19 (2005), pp. 203–212.

[15] W. Putman, S. J. Lin, and B. Shen, Cross-
platform performance of a portable communica-
tion module and the NASA finite volume gen-
eral circulation model, International Journal of
High Performance Computing Applications, 19
(2005), pp. 213–224.

[16] R. D. Smith, J. K. Dukowicz, and R. C.
Malone, Parallel ocean general circulation
modeling, Phys. D, 60 (1992), pp. 38–61.

[17] The Portland Group, PGI High-
Performance Compilers and Tools.
http://www.pgroup.com.

[18] A. J. Wallcraft, SPMD OpenMP vs MPI
for Ocean Models, in Proceedings of the
First European Workshop on OpenMP,
Lund, Sweden, 1999, Lund University.
http://www.it.lth.se/ewomp99.

[19] D. L. Williamson and J. G. Olson, Cli-
mate simulations with a semi-lagrangian ver-
sion of the NCAR Community Climate Model,
Mon. Wea. Rev., 122 (1994), pp. 1594–1610.

[20] P. H. Worley and J. B. Drake, Perfor-
mance portability in the physical parameteriza-
tions of the Community Atmosphere Model, In-
ternational Journal of High Performance Com-
puting Applications, 19 (2005), pp. 187–202.

[21] P. H. Worley and I. T. Foster, PSTSWM:
a parallel algorithm testbed and benchmark code
for spectral general circulation models, Tech.
Rep. ORNL/TM–12393, Oak Ridge National
Laboratory, Oak Ridge, TN, (in preparation).

[22] P. H. Worley and J. Levesque, The perfor-
mance evolution of the Parallel Ocean Program
on the Cray X1, in Proceedings of the 46th Cray
User Group Conference, May 17-21, 2004, R.
Winget and K. Winget, ed., Eagen, MN, 2004,
Cray User Group, Inc.

[23] P. H. Worley and B. Toonen, A users’
guide to PSTSWM, Tech. Rep. ORNL/TM–
12779, Oak Ridge National Laboratory, Oak
Ridge, TN, July 1995.


